

The Behavior, Constraint, and Scenario (BeCoS) Tool: A Web-Based Software Application for Modeling Behaviors and Scenarios

Justin Kaderka, Matthew Rozek, John Arballo, David Wagner, and Michel Ingham

Jet Propulsion Laboratory, California Institute of Technology

AIAA InfoTech@Aerospace, January 8-12, 2018

Kissimmee, FL

Outline

- Motivation and Background
- Ontology Definitions
- BeCoS Tool Overview
- Future Work
- Integrating BeCoS with JPL Tools
- Conclusions

BeCoS Modeling Tool

 Web-based application to model (i.e. specify) system behavior and scenarios

Motivation – What is meant by "Behavior"?

 State variable properties of a system and their values over time, and constraints that describe or define changes

Classified into:

- Intrinsic behavior -What variables are used to describe a system
- Scenario behavior -How state variables evolve over time

Motivation – Why Model Behavior?

 Need to understand how component / subsystem behavior aggregates into behavior of a real system

- Can run simulations on modeled behavior
 - Developmental phase
 - Power/Data predictions; assess against allocations
 - Science collections; assess against objectives
 - Operational phase
 - Simulate next operational cycle to ensure activities within resource constraints

Motivation – Issues with existing tools

- Behavior modeling in SysML using MagicDraw
 - MagicDraw is the JPL-supported tool for SysML
 - Relative high barrier to entry with SysML / MagicDraw for non-experienced users
 - Heavy-weight tool that presents to users much more expressivity (thus options) than needed for behavior modeling
 - There are existing domain-specific ontologies (e.g. Behavior Ontology)
 - There exists a much more compact representation in a modeling tool that is based on those ontologies
 - No general SysML representation for Temporal Constraint Networks (scenarios); must embed TCNs within activity diagram
- Scenario specification declarative vs. imperative
 - Declarative goal-based (what you want to happen)
 - Imperative procedure-based (how you want something to happen)
 - Many current tools support imperative specification
 - Cumbersome to review with complex systems
 - Operational intent has to be inferred

Ontological Approach

- Ontology establishes a vocabulary that can be used to talk about domain of interest
 - Focuses on the concepts and relationships of interest, not on the syntax or particular set of operators
- JPL's institutional model-based systems engineering capabilities are being built upon an ontological modeling foundation
- BeCoS only presents information necessary for ontology

Ontology - Behavior

- State variable is a typed property whose value can change over time
- Parameter is a typed constant
- Behavior constraints constrain how state variable values can propagate over time
 - Constraints assert relationships that are true for all time

Ontology - Behavior

- State variable is a typed property whose value can change over time
- Parameter is a typed constant
- Behavior constraints constrain how state variable values can propagate over time
 - Constraints assert relationships that are true for all time
- Behaving elements simply provide an OO type containment of properties
 - Containment has no semantic relationship to the "math" of behavior, and is only intended to support an OO composition
 - Element Behavior is a form of Behavior Constraint (more specifically, it can be a set/container of Behavior Constraints)

Ontology - Behavior

- State machines are a discrete value type
 - Useful abstraction for describing control behaviors
- SM defines a value type having an enumeration of orthogonal, discrete "state" values
- Transition rules define associated behavior constraints
 - Triggers, guards

Ontology - Scenario

- A scenario describes some progression of states of a particular system over some unit of time
- A scenario is composed of:
 - schedulable behavior constraints on the states/parameters of the Behaving Elements in the System
 - E.g., "SwitchPosition = Closed" for 10 seconds
 - additional temporal constraints that serve to coordinate the behavior in time
 - E.g., "SwitchPosition = Open" for 5 seconds *immediately precedes* "SwitchPosition = Closed" for 10 seconds

Ontology – Implemented in BeCoS

Behavior Ontology

Scenario Ontology

BeCoS Tool

- Web-based application to support behavior modeling
 - Intrinsic behavior (behaving elements, state variables, parameters, state machines, constraints, interactions)
 - Scenarios (asserting how state constraints evolve over time)
- Architecture
 - React framework used with Redux
 - Off-the-shelf libraries used as much as possible
 - D3, Bootstrap, Mathquill, among others
- Guiding Principles
 - Site must be easily navigable and user-friendly
 - Present only relevant information to the user
 - Correct by construction enforced throughout app
 - Presenting only relevant information
 - Validation checks where applicable

BeCoS Tool

What

Web-based behavior modeling tool that conforms to the IMCE Behavior Ontologies

Why

Provide a step-by-step modeling interface with an emphasis on ease of use and rapid modeling

New Model

How

React + Redux infrastructure with an emphasis on reusable views, extensibility, and onedirectional data flow

- Illustrative example
 - Lamp circuit battery, lamp, switch, controller

BeCoS Tool - Elements Tab

BeCoS Tool – Constraint Editor

BeCoS Tool – State Machines Tab

BeCoS Tool – Interactions Tab

Interactions define behavior constraints from more than one behaving element.

BeCoS Tool - Scenarios Tab

BeCoS Tool - Scenarios Tab

Future Work

- Advancing tool to production quality
 - Fixing many identified issues (>75)
 - Assess user interface in Scenario tab

- Model validation analyses
 - State reachability analysis
 - Verifies system can transition into and out of all states
 - Scenario validation
 - ensure acyclic graph

Future Work

- Integrate BeCoS into end-to-end resource analysis workflow
- Activity Plan Generator (APGEN)
 - Schedules activities, simulates a scenario, and produces state timelines for all modeled variables
 - Currently used as scheduling tool on Europa Clipper
 - Inputs to APGEN (system behavior and scenarios) must be hand-coded in a textual interface
 - Not possible to review inputs only verification of modeled behavior is through inspection of timeline outputs
- JPL's new MBSE ecosystem
 - Tool / database to serve as single-source-of-truth
 - Exchange model information with specification tools (e.g. BeCoS, MagicDraw), and analysis tools (e.g. APGEN, Modelica)
 - Data exchanged adheres to <u>ontologies</u>

Integrating BeCoS with APGEN

Current workflow for resource reports

 Manual specification of behavior models in both APGEN and Modelica

Integrating BeCoS with APGEN

Desired workflow for FY18

Behavior specified once in BeCoS can be transformed

Summary

- Developed a web app to allow systems engineers to directly specify:
 - Behaviors (state variables, parameters, constraints, interactions, state machines)
 - Declaratively-specified scenarios
- Prototype tool with initial user testing by Europa Clipper users
- Plan to integrate BeCoS with JPL analysis tools
 - Perform simulations with behavior directly specified by systems engineers

Acknowledgements

- Team Members:
 - Justin Kaderka (task lead)
 - John Arballo (developer)
 - Tyler Ryan (past developer)
 - Erika Hill, Deanna Heer, Zachery Miranda, David Tsui, Thomas Kwak, and Brandon Wang (past intern developers)
 - Matthew Rozek (past user / advisor)
 - David Wagner (advisor)
 - Michel Ingham (advisor)
- Additional support provided by:
 - Steven Jenkins and Nicolas Rouquette (institutional IMCE ontology usage)
 - Jean-Francois Castet (behavior ontology, advised initial effort of the tool)
- This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

